Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.28.587260

ABSTRACT

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.18.431484

ABSTRACT

Several promising vaccines for SARS-CoV-2 have received emergency use authorization in various countries and are being administered to the general population. However, many issues associated with the vaccines and the protection they provide remain unresolved, including the duration of conferred immunity, whether or not sterilizing immunity is imparted, and the degree of cross-variant protection that is achieved with these vaccines. Early evidence has suggested potentially reduced vaccine efficacy towards certain viral variants in circulation. Development of adjuvants compatible with these vaccine platforms that enhance the immune response and guide the adaptive and cellular immune responses towards the types of responses most effective for broad protection against SARS-CoV-2 will likely be pivotal for complete protection. Natural viral infection stimulates strong immune responses through the activation of three main pathways involving Toll-, RIG-I-, and NOD-like receptors (TLRs, RLRs, NLRs). As induction of appropriate innate responses is crucial for long-lasting adaptive immunity and for shaping the correct types of immune responses, we developed a combination, intranasal, adjuvant integrating a nanoemulsion-based adjuvant (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). This rationally designed combination adjuvant yielded a synergistic immune response with highly robust humoral and cellular responses towards SARS-CoV-2 using a recombinant spike protein S1 subunit antigen. Significantly enhanced virus neutralizing antibody titers were achieved towards both a homologous SARS-CoV-2 virus (IC50 titers of 1:104) and a mouse-adapted variant containing the N501Y mutation present in the B1.1.7 UK and B.1.351 South Africa variants. Importantly, NE/IVT DI dramatically enhanced the TH1-biased cellular response, which is expected to provide more durable and tailored cellular immunity while avoiding potential vaccine enhanced pathology previously associated with TH2-biased responses in some SARS-CoV and MERS-CoV vaccines. Our previous work with the NE/IVT DI adjuvant has demonstrated its compatibility with a broad range of antigen types. Thus, this combined adjuvant approach has strong potential for improving the induced immune profile for a variety of SARS-CoV-2 vaccine candidates such that better protection against future drift variants and prevention of transmission can be achieved.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL